»  Solutions to puzzles in my VDARE.com monthly Diary

  October 2023

—————————

In the Math Corner of my October 2023 Diary I posted the following brainteaser.

Define SigN to be sin(1) + sin(2) + sin(3) + … + sin(N). The numbers there are all radians, of course.

Prove that   −1/7 < SigN < 2  for any positive whole number N.

(Credit here belongs, I think, to Sam Walters.)

The nifty thing about this result — at any rate to me — is that it's not what you'd expect at a first glance. Given the apparently random y-coordinates of whole-number radians along a graph of the π-periodic sine function, you'd expect the lower and upper limits on the sum to be symmetrical about the x-axis.

—————————

•  Solution

The keys to a solution are familiar identities from algebra, trig and complex-number arithmetic.

From algebra:

(i)   (1 − xN+1) / (1 − x) = 1 + x + x2 + x3 + … + xN

From trig:

(ii)  cos² A + sin² A = 1

(iii)  cos 2A = 1 − 2 sin² A

(iv)  sin (A + B) = sin A cos B + cos A sin  B

From complex-number arithmetic:

(v)  eiθ = cos(θ) + i sin(θ)

(vi)  (a + ib) (a − ib) = a² + b²

Substituting ei for x in (i) and expanding with (v), it easily follows that what I have called SigN is just a way of writing the imaginary component of

(vii)   (1 − ei(N+1)) / (1 − ei)

So is there another way of writing the imaginary component of (vii) that will give us the inequalties we seek?

First, let's express the denominator of (vii) as a plain complex number.  ei  is just   cos(1) + i sin(1).  The denominator of (vii) is therefore  (1 − cos(1)) − i sin(1).

With (vi) in mind, let's now multiply the top and bottom of (vii) — both the numerator and the denominator — by (1 − cos(1)) + i sin(1), to get rid of that pesky i in the denominator. Using (vi), (ii), and (iii), the denominator resolves into 4 sin²(½).

So the denominator is no longer a complex number. It's a real number, 0.91939538826372… 

We now have to compute the numerator of (vii) — which, remember, we just multiplied by (1 − cos(1)) + i sin(1) — then, when we've figured out its imaginary component, we'll divide it by that 4 sin²(½).

That numerator is now (1 − cos(1)) + i sin(1)  times  (1 − ei(N+1)). Moving from the exponential to its trig equivalent via (v), that is

((1 − cos(1)) + i sin(1)) ×  (1 − (cos(N+1) + i sin(N+1))).

What is the imaginary component of that? Well, we just multiply out and ignore real terms. That, with help from (iv), gets us:

sin(1) − sin(N + 1) + sin(N).

We can further reduce the number of occurrences of N in that expression by rewriting it as

sin(1) − sin((N + ½) + ½)  + sin((N + ½) − ½)
and then using (iv) again:

sin(1)  − (sin(N + ½) cos(½) + cos(N + ½) sin(½))  + (sin(N + ½) cos(½) − cos(N + ½) sin(½))

That cancels down to

sin(1) − 2 cos(N + ½) sin(½)

Since the value of the cosine — of any cosine — may range from −1 to 1, that expression can go from sin(1) − 2 sin(½) to sin(1) + 2 sin(½), which is to say from −0.11738009240051 to 1.80032206201630. Dividing at last by our denominator 4 sin²(½), the limits for SigN are

−0.12767096061052 < SigN < 1.95815868232297

Since −1/7  is −0.14285714285714…, it is certainly the case that −1/7 < SigN < 2 , with room to spare.  QED.